Como um exemplo SMA, considere um título com os seguintes preços de fechamento em 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29, 28 Uma MA de 10 dias seria a média dos preços de fechamento para os primeiros 10 dias como o primeiro ponto de dados. O ponto de dados seguinte iria cair o preço mais antigo, adicione o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme observado anteriormente, MAs atraso ação preço atual porque eles são baseados em preços passados quanto maior for o período de tempo para o MA, maior será o desfasamento. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias porque contém preços nos últimos 200 dias. A duração do MA para usar depende dos objetivos de negociação, com MAs mais curtos utilizados para negociação de curto prazo e MA de longo prazo mais adequado para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. A dinâmica descendente é confirmada com um crossover de baixa, que ocorre quando um MA de curto prazo cruza abaixo de um MA a longo prazo. Média Móvel Integrada - ARIMA DEFINIÇÃO de Média Móvel Integrada Autoregressiva - ARIMA Um modelo de análise estatística que utiliza dados de séries temporais para prever tendências futuras. É uma forma de análise de regressão que procura predizer movimentos futuros ao longo da caminhada aparentemente aleatória feita pelas ações e pelo mercado financeiro examinando as diferenças entre os valores da série em vez de usar os valores dos dados reais. Lags das séries diferenciadas são referidos como auto-regressivos e os atrasos dentro dos dados previstos são referidos como média móvel. BREAKING DOWN Média Movente Integrada Autoregressiva - ARIMA Este tipo de modelo é geralmente referido como ARIMA (p, d, q), com os inteiros referindo-se ao autorregressivo. Integradas e móveis do conjunto de dados, respectivamente. ARIMA modelagem pode levar em conta tendências, sazonalidade. Ciclos, erros e aspectos não-estacionários de um conjunto de dados ao fazer projeções.6.2 Médias móveis 40 ordens elétricas, ordem 5 41 Na segunda coluna desta tabela, é mostrada uma média móvel de ordem 5, fornecendo uma estimativa da tendência - ciclo. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993) o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores para os dois primeiros anos ou últimos dois anos porque não temos duas observações de cada lado. Na fórmula acima, a coluna 5-MA contém os valores de hat com k2. Para ver como é a estimativa do ciclo tendencial, traçamos o gráfico juntamente com os dados originais da Figura 6.7. Parcela 40 elecsales, venda de eletricidade principal quotResidential, ylab quotGWhquot. 41 Observe como a tendência (em vermelho) é mais suave do que os dados originais e captura o movimento principal da série de tempo sem todas as flutuações secundárias. O método da média móvel não permite estimativas de T em que t está próximo das extremidades da série, portanto, a linha vermelha não se estende para os bordos do gráfico em nenhum dos lados. Posteriormente, usaremos métodos mais sofisticados de estimativa de ciclo tendencial que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa de tendência-ciclo. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito da alteração da ordem da média móvel para os dados de vendas de eletricidade residencial. As médias móveis simples como estas são normalmente de ordem ímpar (por exemplo, 3, 5, 7, etc.). Isto é assim que são simétricas: numa média móvel de ordem m2k1, existem k observações anteriores, k observações posteriores e a observação do meio Que são médias. Mas se m fosse uniforme, não seria mais simétrico. Médias móveis de médias móveis É possível aplicar uma média móvel a uma média móvel. Uma razão para fazer isso é fazer uma média móvel de ordem uniforme simétrica. Por exemplo, podemos pegar uma média móvel de ordem 4 e, em seguida, aplicar outra média móvel de ordem 2 aos resultados. Na Tabela 6.2, isso foi feito para os primeiros anos dos dados da produção de cerveja trimestral australiana. Beer2 lt - window 40 ausbeer, início 1992 41 ma4 ltm 40 beer2, ordem 4. center FALSE 41 ma2x4 ltm 40 cerveja2, ordem 4. center TRUE 41 A notação 2times4-MA na última coluna significa um 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel de ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451,2 (443410420532) 4 e 448,8 (410420532433) 4. O primeiro valor na coluna 2 x 4-MA é a média destes dois: 450,0 (451,2448,8) 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), ele é chamado de média móvel centrada de ordem 4. Isso é porque os resultados são agora simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. Fim É agora uma média ponderada de observações, mas é simétrica. Outras combinações de médias móveis também são possíveis. Por exemplo, uma 3 x 3 MA é frequentemente utilizada e consiste numa média móvel de ordem 3 seguida por outra média móvel de ordem 3. Em geral, uma ordem par MA deve ser seguida por uma ordem par MA para torná-la simétrica. Similarmente, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimativa do ciclo tendencial com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo tendencial a partir de dados sazonais. Considere o 2x4-MA: fracasso do chapéu frac14y frac14y frac14y frac18y. Quando aplicados aos dados trimestrais, cada trimestre do ano recebe igual peso, uma vez que o primeiro eo último termo se aplicam ao mesmo trimestre em anos consecutivos. Conseqüentemente, a variação sazonal será média e os valores resultantes de hat t terão pouca ou nenhuma variação sazonal restante. Um efeito semelhante seria obtido utilizando um 2-8 MA ou um 2-12 MA. Em geral, um m-MA 2x é equivalente a uma média móvel ponderada de ordem m1 com todas as observações tomando peso 1m exceto para o primeiro e último termos que tomam pesos 1 (2m). Portanto, se o período sazonal é par e de ordem m, use um m-MA 2x para estimar o ciclo tendencial. Se o período sazonal é ímpar e de ordem m, use um m-MA para estimar o ciclo de tendência. Em particular, um 2 x 12 MA pode ser usado para estimar o ciclo de tendência de dados mensais e um 7-MA pode ser usado para estimar a tendência-ciclo de dados diários. Outras escolhas para a ordem do MA normalmente resultarão em estimativas de ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamentos elétricos A Figura 6.9 mostra um 2 x 12-MA aplicado ao índice de ordens de equipamentos elétricos. Observe que a linha suave não mostra nenhuma sazonalidade, é quase o mesmo que o ciclo de tendências mostrado na Figura 6.2 que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto para 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Plot 40 elecequip, ylab quotNovas ordens indicequot. Col quotgrayquot, main quotredigtquot, 41 Quotred quotredquot 41 Médias móveis ponderadas As combinações de médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a um 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, uma m-MA ponderada pode ser escrita como hat t sum k aj y, onde k (m-1) 2 e os pesos são dados por a, dots, ak. É importante que todos os pesos somem a um e que sejam simétricos para que aj a. O m-MA simples é um caso especial onde todos os pesos são iguais a 1m. Uma grande vantagem das médias móveis ponderadas é que elas produzem uma estimativa mais suave do ciclo tendencial. Em vez das observações que entram e que deixam o cálculo no peso cheio, seus pesos são aumentados lentamente e então lentamente diminuídos resultando em uma curva mais lisa. Alguns conjuntos específicos de pesos são amplamente utilizados. Alguns deles são apresentados na Tabela 6.3.
EZTrader despede Auditors EZTrader woes continuar como a empresa demite Ziv Haft, o Certified Public Accountants com sede em Israel, e um membro da BDO empresa EZTrader demite auditores é o mais recente anúncio arquivado com o Securities and Exchange Commission cheats de um animal ferido impotente amarração em Seu death throes O impulso da liberação. Japanese Volumes binários Take A Bath Japonês volumes de opções binárias para baixo 21 mês-em-mês como Brexit caos acalma e férias de Verão regra o roost japonês volumes binários caiu de 44 6tr em julho para 35tr em agosto como O Brexit depois que os choques dissipated e as férias de verão mantiveram o balanço O gráfico de barra abaixo mostra os volumes mensais. Foco na política monetária do Banco de Inglaterra Daily Financial Review 15 de setembro 2016 Morning Report 09 00 Londres Mercados eyeing o Banco de Inglaterra estreitamente hoje, O MPC ajustou-se para liberar a orientação a mais atrasada em taxas de interesse Nenhuma mudança é esp...
Comments
Post a Comment